skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anayah, Rasha I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we synthesize and study the charge transfer properties of a oligosilyl coordination polymer formed from zirconium clusters. Although the synthesized disordered polymer lacks long range order, spectroscopic and computational evidence suggest that the metal-ligand bond is formed, and the principle crystallographic reflections closely match those simulated from inter-node spacings matching that of the ligand. The porous polymer allows for the incorporation of guest molecules as demonstrated by the intercalation of tetracyanoquinodimethane (TCNQ). Charge transfer is predicted from DFT and experimentally observed by infrared spectroscopy, solid-state 29Si nuclear magnetic spectroscopy, and voltammetry. 
    more » « less
  2. Metal–organic frameworks (MOFs) have been an area of intense research for their high porosity and synthetic tunability, which afford them controllable physical and chemical properties for various applications. In this study, we demonstrate that functionalized MOFs can be used to mitigate the so-called polysulfide shuttle effect in lithium–sulfur batteries, a promising next-generation energy storage device. UiO-66-OH, a zirconium-based MOF with 2-hydroxyterephthalic acid, was functionalized with a phosphorus chloride species that was subsequently used to tether polysulfides. In addition, a molecular chlorophosphorane was synthesized as a model system to elucidate the chemical reactivity of the phosphorus moiety. The functionalized MOFs were then used as a cathode additive in coin cell batteries to inhibit the dissolution of polysulfides in solution. Through this work, we show that the functionalization of MOF with phosphorus enhances polysulfide redox and thereby capacity retention in Li–S batteries. While demonstrated here for polysulfide tethering in batteries, we envision this linker functionalization strategy could be more broadly utilized in separations, sensing, or catalysis applications. 
    more » « less